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Abstract
We illustrate how one can easily derive kinetic encrgy operators for polyatomic molecules using
polyspherical coordinates with very general choices for z-axis embeddings and angles used to specify

relative orientations of internal vectors. Computer algebra is not required.



I. INTRODUCTION

Mladenovi¢[1, 2] and Gatti et al.[3-5] have presented derivations of kinetic energy op-
erators for treating rotations and vibrations of polyatomic molecules using polyspherical
coordinates. In these coordinates, the IV nuclear position vectors are transformed to N — 1
internal vectors and the nuclear center of mass vector, and the internal vectors are pa-
rameterized by spherical polar coordinates: [i;, 0;, ¢, © = 1, ., N — 1. Then a body-fixed
coordinate system is introduced, defined by aligning the bocdy-fixed z axis along the first
vector, and placing the second vector in the body-fixed zz plane. The remaining angles
0;, ¢; are either referenced with respect to the body-fixed z axis, or other vectors.[6]

These coordinates are very useful, but are clearly not the mest general choices. One choice
of coordinates that is not treated is well known to be useful for triatomics. Sutcliffe and
Tennyson[7] give the kinetic energy operator for triatomics using polyspherical coordinates
in a very general form, and one finds that their expression having the body-fixed z axis lying
between the two vectors to be very useful. For example, taking the body-fixed z axis to
bisect the HOH angle in water gives quite good separation between rotation and vibration.
One can see that this tyvpe of embedding might also be useful for systems of more than three
atoms. Furthermore, for tetraatomics, it can be useful to have one of the internal angles
giving the relative position of two light atoms, while another vector defines the body-fixed
z axis, e.g. having the HCH angle in formaldahyde a coordinate while the heavy CO group
defines the body-fixed z axis. In addition, it may be desirable in this example to define
the orientation of HCH as a unit vector relative to CO. While the first is possible using
Mladenovié’s[6] local axis coordinates, the second is not. Ir. this work we will present a
method for the derivation of kinetic energy operators for coordinates that encompass all of
these choices.

The method avoids complex intermediate triganometric expresions by factorizing out the
dependence on Euler angles, which is an alternative to the scheme of Lukka,[8] and allows
one to build up the kinetic energy operator for complex systemns from fragements where the
kinetic energy operator is already known. The treatment of non-orthogonal vectors is also
straightforword as is the introduction of Eckart rotations. We only consider three, four, and
five atom system in the present work, but the techniques described can be easily used to

obtain the kinetic energy operator for more complex systems.



II. INTERNAL COORDINATES AND GENERAL PLAN

Let X denote the 3 x N matrix of nuclear coordinates, and x the 3 x N matrix of internal
vectors, with the last vector giving the position of the nuclear center of mass. Then these
vectors are related by

X =xM, (1)
with M an N x N matrix of mass factors. We make two res:rictions on M: first of all its
inverse, denoted M, must exist, and secondly, there is no coupling of the other vectors to
the nuclear center of mass vector. For a more in-depth discussion of these mass factors, sec
the work of Aquilanti and Cavalli,[9], Bramley and Carrington,[10] and Schwenke.[11] Then

since the exact kinetic energy operator for the nuclei is

T:_—Z Zax?’ (2)

where my, is the mass of nuclei «, and i runs over z, y, and z. we find that
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where the reduced mass factors are given by
1 1
= Zl‘/[a[j m[a/gl (4)
Hp a
One can choose M so that ;731; is non-zero only when g = ', but that is not a requirement
of our theory. So far we have done nothing new.

We next re-write the kinetic energy operator in the symmetric form
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where t means complex conjugate acts to the left. Since the center of mass decouples from
the rest of the internal coordinates, in the sum we will take 3 and 3 to run from 1 to N-1

We then seek expressions of the form

0
Bxig

= ZA]'i(aLBaﬁLBavLB) Zgj;‘i‘loh (6)
l

J
with A a rotation matrix parameterized by the Euler angles a®?, GEBand ~L8, which

take the laboratory frame to the body-frame, g is a matrix depending only on vibrational
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coordinates, and the O, are operators which include derivatives with respect to vibrational
coordinates as well as total angular momentum components. Then, when we substitute this

into Eq. 5, we obtain

T =3 0{CuOr. 7)
i
where
Gu = h2/2 Z g;{ilgjﬁ’l’/:uﬁﬁ" (8)
iBo

Thus once we know g, we can very easily form G and hence the kinetic energy operator.
To solve for ro-vibrational wave functions, we use the variational principle and analvtic
basis functions. Thus we can make explicit use of the symmetric form of the kinetic energy
operator. For users of grid methods, it is required that both derivatives act to the right.
However it is an easy excercise in differential calculus to convert the symmetric expressions
to the more customary form. When doing this, one must bear in mind that in matrix
elements of the kinetic energy operator of Eq. 7, none of the operators act on the Jacobian
determinant. However, when one integrates by parts to obtain the expression with both

derivatives acting to the right, the jacobian determinant 1s diferentiated.

III. ONE VECTOR

Consider a single vector. Its spherical polar form in the space fixed axis system is
Rsinflcos ¢
= | Rsinfsing |. (9)
Rcost
The associated angular mometum vector is given by
sin géa% + cot 6 cos qﬁ% A

—

L =ih —cos¢%+cot6?sin¢% . (10)
A
ErS /
We will define a body-fixed z axis to be along 7, thus to rotate vectors to this frame of

reference, we will rotate by the rotation matrix A(¢,,0) (see Edmonds{12] and Ref.11 for

rotation conventions), ¢.e.
0

P =A(p,0,00F=] 0 (11)
R



and

CSC 95%\
[ =A6,0,00L=ih| -2 |. (12)
0

Now L%/ is a rather particular angular mometum vector in that it does satisfy customary
commutation relations, normal or anomolous, so one must exercise care in its use. One can

easily show that
0 , .
G = ZAji(@’ 0, O)ZQJ(-ZI)OI. . (13)
1 ] l

with gV given in Table I, and O, made up of % LY and Lbf. This expression can be

substituted into Eq. 5 to yield the kinetic energy operator:

R2/a\1 o ] f
T = — | — bf bf of bf 14
2 (0R> LOR * (Lr) 2 RQL R Q;LR‘ZL (14)

Substituting Eq. 12 into this yields the well known kinctic encrgy for a diatomic written in

symmetric form.

IV. TWO VECTORS

In this case Eq. 13 becomes

— ¢ﬁa0ﬂ7 )Zgﬁl‘j(}l,“ (15)
lg

8(1‘2[5 j

where O, comprises 2977 LA LMY, and O,, comprises a_R" L2 and LY?, where the
superscripts on the angular momentum operators indicates ttey are expressed as in Eq. 12
in the axis system particular to each vector. If our internal coordinates are orthogonal,
i.e. 1/usp = 0 when g # (', then we can substitute this into Eq. 5 and simply obtain
the kinetic energy operator for two uncoupled diatomics. This is of course only of passing
interest. To take advantage of the great simplification of total angular momentum coupling
or to treat non-orthogonal coordinates, we need to remove the 8 dependence on the Euler
angles in Eq. 15. When this is done, when we insert the expression for the derivative into
Eq. 5, the rotation matrices vanish because of orthogonality. To do this we need to define a
body-fixed coordinate system. This is done by a sequence of three rotations. We first rotate
by A(é),6,,0), which takes the first vector to the body-fixed z axis and the second vector to

the angles 0, and ¢,. The second rotation is by A(0,0, {ég), which takes the second vector to
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the a-z plane. The final rotation is A(0, (Léz, 0), where a is a parameter running from zero
to one.[7] When a = 0, the body-fixed z axis 1s along the first vector, while when a = 1,

the body-fixed z axis is along the second vector, and when ¢ = 1/2, the body- fixed z axis

bisects the two vectors.

We begin by considering only the first two rotations. We have
al'll - Z 4]1 ¢17917 )Zgj(lll)oll (16)
= ZAﬂ((m,el,m Z A;4(0,0, &) qu O, (17)

=2 Ajil ¢1»911¢2)29111011, (18)
J I

where Oy, is the same as O, except that the angular momentum operators have been rotated

to the body frame of the triatomic. These will be denoted LB and L}}". For the second

vector we have

ax2 =Y Aji(¢2,60,,0) 29313012 (19)

: J

= ZAji(¢1=9170 ZAkj @2,927 nghl)qu (20)
J k

= ZAji((z)lyglaé‘Z)ZAkj(Oaé%O Zgﬂlg()l;z‘ (21)
J k )

To complete the transformation, we need to express the angular momentum operators
in terms of 6%2 and the total angular momentum operators. We start by eliminating LBF
and Lle by introducing the total angular momentum vector J. We have to be careful here.
In the space fixed frame, J = L, + Ly, however we have L; in the frame BF obtained
by rotating by A(rp’l,91,q52). If we rotate the space frame J by A(d)l,Bl,ggg), we obtain
an angular momentum vector satisfying the anomolous commutation relations, thus it is
customary to reverse the signs of the components, and we wiil do so here as well. Thus we
have

LBF = —gBF _ L3F. (22)
Next we need LEF". Now L?Qfl is given by Eq. 10 using ¢ and 6, as the independent variables,
so we rotate L' by A(0,0, ¢,), which yields LEf" = ih cot 02 5= and LiF = —1h~=— Finally

we note that

J, = ih—-a;—, (23)
g2



and we use this to eliminate the derivative with respect to ggg In Ozz, we need szf“) This is
given by Eq. 12 using ¢» and 0, as the independent variables.

In summary we now have

Z (91,01, ¢z Z (/l; (24)

azz[)’ j ]

for 3 =1 and 2, where g is given by Table IT with a = 0, and O, comprizes 5%, 5}9{—2,

J2F, JPF, and JBE where x = f, is the angle between -he two vectors. We can then

substitute this into Eq. 8, and obtain the well known expression for the triatomic kinetic

energy.[13]

For the most part, the introduction of the third rotation is straightforward. We insert a

resolution of the identity so that Eq. 24 becomes

0 ‘ - -
0rer = ZAji(fDl,&l, @) ZAmj(O: aba, 0) Api (0, afy, 0 ZnggOl (25)
t 7 km
= Z Aji(()éLB, IBLB, ’)’LB) Z 44jk(0: (1‘92, Z gk 31 (26)
J k

with otB, BB and +"P the new Euler angles relating the space fixed frame to the new
body-fixed frame denoted BF. It is straightforward to multiply the matrices A and §@ to

get a new effective g(®, but more care needs to be taken to re.ate J in body frame BF to J

in body frame BF. Formally we are changing variables from ¢y, 01, 9352 and 92 to o8B, BLB,
LB and y, where
A(alB, 318 A1B) = A(¢y, 0y, QBQ)A(O,aéQ,O), (27)
and
x = 0s. (28)

Using the chain rule, we have

_('3__8(}:“3 0 +8ﬁI‘H 0 +8”/LB %) +5XLB 0
dw  Ow OalB Ow OpLE Ow OB Ow OxLB’

(29)

T =~ - LB Py .
w = ¢y, 0,, ¢, and B;. Now the only nonzero "7 geeurs for w = 6, thus the equations for
) ) 3 J Sw 2

w = 0, are just the equations describing a rotation by the constant afs, thus
JBF = A(0,ab,, 0)J7F (30)

can be used to eliminate the BF components of the total angular momentum in terms of

the BF components. This amounts to multiplying the final three columns of the result so

-
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far from the right by A%(0, abs, 0). The final equation involving f, is most easily analyzed
considering the instantenous case where ¢, = 6, = ¢» = 0. Then we have
3] 0
— = »azJBF+ = (31)
00, ox’
i e the fifth column of the result so far needs to be aumented by —ai times the third column.

Combining all of this together, we have

0

_ B IB LB (2) A p
axlg Z A]Z Ag ) ; g]("'lOl’ (32)

with g given by Table Il and O; comprizing 5‘?{—1, a_fa;’ %, JB7 JBT ‘and JE7. Substituting
this expression into Eq. 5 we obtain the expression of Sutcliffe and Tennyson[7] for their
z-axis embedding coordinates.

It should be noted that g(? in Table II is overly complex for triatomics. This is because
we could have factored cut the rotation matrix left multiplying g(? and this rotation matrix
would collapse down to the unit matrix in Eq. 8. However tkis rotation matrix is required
for the next sections, so we retain it here as well.

To obtain the z-axis embedding of Sutcliffe and Tennysor, we simply insert a rotation

that exchanges the z and z axes. This changes g® in only tc a minor extent. We can also

exchange the z and y axis, if desired.[14]

Now consider the possibility that a depends on Ry, R, and x. The only changes are Eq.

31 is replaced by
0 oa 0
— + i 33
= —latxg W+ 5 (33)
and

0 0 da Jsf (34)

om. "~ ar  YGR

where the arrow means “replaced by”, and these changes mcdify g® in a straightforward

manner. That is, it is not difficult to choose a so that the Eckart conditions{15] separating
vibration and rotation are satisfied. The only complication is the kinetic energy operator
matrix elements are no longer obtainable analytically, but it should be possible to obtain
accurate results numerically with very little additional cost compared to calculations keep-
ing a fixed. There is, of course, still the problem of singularities arising when the Eckart

conditions lead to ill posed equations at linear configurations.



V. THREE VECTORS

When we have three vectors, we use the results from the single vector case and the two
vector case. We still use the notation JPF for the total angular momentum in the final
body-fixed frame, so we will change our notation for the two vector result. For the two
vector sub-part, we will call the angular momentum jlg, the body-fixed frame defined for it

bf12, and the Euler angles a2, 312, and 712. Then we have

d 2y A _
=Y Aji(oaz. B2, 1i2) > g;g)llgolm (35)
53:1-5 : N
7 12
for 8 =1 and 2, with Oy,, comprizing 8—%, a?zz’ 8‘1, je12, h1E, and j4/12 and
- Z 4]1 ¢3 93; Zg]lg)ol?,: (36)

83 i3

J

with Ola comprizing 6?23, 75, and Lbf3.
Next we have two choices. We can make the over-all Euler angles ¢, 63, and ;2. where
(19 18 defined by
A(ay, ,5’12,:7'12) = A(@127,512,712)AT(¢3~,93-, 0), (37)

or we could make the over-all Euler angles o, Bi2, and 2. It is equally easy to derive the
matrix ¢® for each case, but for illustration in this section, we consider the former case.
This is also the situation considered in Ref.11, where it was called the {jk coupling scheme.
The later case would be treated as in the next section.

Thus we follow the procedure of the previous section to obtain

0

v =Y Aji(os, 937012)2 Ap; (0, Bras 12) Y 9k5112011> (38)

J 2

for 3 =1 and 2, and for § = 3,

z i( @3, 03, (y2) 29113 (3 (39)

J I3

8113

where 013 comprizes aR , LB and Ly3 , where BF is the body-fixed frame defined by

the Euler angles ¢, #3, and &;2. We then introduce the total angular momentum JBF to
eliminate EfF:

LBF = —JPF — jBF. (40)



The functional form of jf’;r is given by rotating ff§3 by &9

cot }6’12% — CsC '612%
i. 112

“BF _ ~ 2hf3 - Jd /
Jiz = A(0,0,d12)913" = th T 91 , (41)
.
day2
where -
— COS (1 cot fo 6(?1 — sin algﬂ + €os @ryy €SC 61”871»
i3 PRI = 9 8 .- ,
J1a. = —th sin ap cot Siagg; + cos a5 +sindgy csc /ﬁl?am ) (42)
3
Oay2

We also use

— COS Y2 CSC ﬁlgd + sin /12—66 + €os Y12 cot Blgaw

hf12 -
P2 =ih | sind, csc ﬁlgm + cos 712551—2 — sin 9 cot ﬁm% (43)
3
M2
to transform to differential expressions. Finally, we eliminate 37— by using
. 0
JEY = ih— 44

In summary, we obtain

=Y Aji(¢s, 03, &12) 1> 9 j[C)ls (45)
1

ang j
where 3% is gi bv
G, is given by
(3) 2k Ajk(ovﬁlzﬂu)ﬁfgl B=1,2
9js1 = ’ (46)
~(3) B
9;n g=3

et =(3) e A s a @8 8 & _9 a BF BF
with ;5 given in Table III, and O; comprizing 5= 3g;> 3R, oy B na e JP5 and

JBE Tt should be noted that when orthogonal coordinates are used, the rotation matrices
A(O,BIQ,%Q) will collapse to give the unit matrix when inserted into Eq. 8. Only for
non-orthogonal coordinates do these give contributions to the functional form of the kinetic
energy operator.

Next let us re-address the issue of using ¢3, 63, and @&, rather than a;s, Bi2, and yy2 as

the overall Euler angles. Since one can show that (see Eq. 37)

A0, B, 12) A(ps, 03, Gia) = Az, Bia, 1i2), (47)
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if we introduce the rotation A(0, 5832, b%12), then when b = 0, we recover the @3, 03, a2
case, while when b = 1, we recover the ay, Bro, Y12 case. This is exactly analogous to the
rotation A (0, af, 0) introduced in the previous section. Ther. we have

0

T

> Ajz‘(CYLB, BLE LB > A0, b2, t1a) > @i?lot, (48)
K I

J

where ofB, gFB ~LB define the body-frame BF. As before, we have

TEF = A(0, 812, b712) TPF (49)
but now
9 Y- - 5 BF 0
— — —ibsinbfa ;T —ibcosbBiad,” + = (50)
Bz 0p12
and
0 0
T——?—ibj?}—'*"f- 51
0Y12 ) 2 (1)

We determined these last two relations by numerical experimentation. Thus we multiply
g® from the left by A(0, b3i2, b%12), multiply the final three columns of the result from the
right by AT(0, b@lg, b¥12), then subtract ibsin b7, times the fifth column from the seventh
column, subtract ibcos by times the fifth column from the eighth column, and subtract zb
times the sixth column from the ninth column to obtain the matrix g in the expression

0

B:L‘Z'g

= Z Aji(O[LBv ﬁLB’ W/LB) Z g§;3)lOl (52)
J !

‘ A : 8 o8 8 8 _o_ 9 BF JBF BF
where O; comprizes 35—, 575 3" by’ 935, iz’ Jo7, g7 and JPT

It should be noted that the rotation by b2, b2 has no effect on the kinetic energy for
J=0.

Kinetic energy operators using the embedding defined by b have never been used before,
and it would be very interesting to explore the benefits that arise from allowing b to be
different from 0 or 1. One example that immediately comes to mind is this allows the z axis
to be aligned with the symmetry axis for XHj molecules at the equilibrium geometry.

Although we do not do so here, it should be straightforward to introduce Eckart rotations
at this point. However, in contrast to the two vector case, it will not be possible to satisfy

the Eckart relations by varying a single parameter.
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VI. FOUR VECTORS

When we have four vectors, one can use the results of a single vector and the results of
three vectors, or one can use the results for two vectors twice. The former case is exactly
analogous to the three vector casc treated above. Following the pattern given before, one
can easily derive the appropriate g® for either case. Since CHy is a molecule of interest to
us, we will only consider the case when we use two vectors twice.

As in the three vector case, we need to change the two vector notation. For the first two
vector sub-part, we will call the angular momentum J12, the body-fixed frame defined for
it bf12, and the Euler angles c12, 512, and 712. The quantities for the second two vector
sub-part are defined analogously, except with the subscript 34. We will take ayq, B2, and

12 to define the body-fixed frame BF (= bf12), so that we have for #=1and 2,

b .
= ZAji(alzaﬂm:’)’m)Zgj('?zm‘?lm (53)

(,().Tig J ha

with Oy, comprizing 0%, 5%2, %, iB5, Jp5, and JBE and for § = 3 and 4,
8z Z 012,,3127’712 Z 1k] %43/334’ 734 29“1340134 (54)
i3
J l34

. A i) a 8 bf34  -bf34 .bf34
with Oy, comprizing 35, 3g7: Byer Jo3t » Jy34 > and 7,3y , with

A(ass, B4, 734) = Alcvza, B, v34) AT (12, Bras M12). (55)

We proceed as before by introducing the total angular momentum, which because j57 and
JBE are sign reversed while 787 is not, yeilds

i =T+ 5 (56)

However jBF is given by Eq. 42, so in the case of orthogonal coordinates where the rotation

A (34, B34, 731) vanishes in the kinetic energy operator due to orthogonality, we obtain a

8 a8 a8 8 o
quite simple expression in terms of the 15 operators zp-, 7 310 3R:’ dxiz’ Oxar’ J234

]ygi, jBE. ]%24, ]%34, ]%%4, JEE, JyBF, and JB¥. We can use both Eq. 42 and Eq. 43 to

convert st-x etc to derivatives with respect to &gy, O34, and 734, so there are only 12 unique

operators.
In Table IV we give the resulting matrix in symbolic form. There it is understood that

the matrices g(>1) are the first three columns of g, g(*? are the last three columns of g

and first three rows are for 8 = 1, the next for 5 = 2, etc.
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However the kinetic energy operator derived in this way does not couple vibration and
rotation in a symmetric manner. This is analogous to the triatomic case when one treats
H,0O with @ = 0. So we need to introduce the additional rotaion A(ctyy, C,z’;’34, ¢734), which
reverts to the above case when ¢ = 0, makes the overall Euler angles asy, B34, Y34 When
¢ = 1, and treats the two pairs of vectors more equivalently when ¢ = 1/2. This rotation is

included exactly as before, with the analog of relations 50 and 51 being

— — —ic(— sin ¢Fy4 cos (:‘/34Jff + sin ¢34 sin c:,'gA;Jff + c0s ¢34 Jff) +— (57)
Oy ; Ocezy
e ' N 0
—— —y —ic(sin ¢34 JET + cos c"/34Jny) + ==, (58)
0334 0334
and

0 0
— — —iCJZBF + .
0734 3’7‘34

When one considers cases where ¢ is nonzero, the resulting expressions can become quite

(59)

complex. Since we are interested in including non-adiabatic corrections which in general
requires numerical techniques,[17] we will take a numerical approach to evaluate matrix

clements of the kinetic energy operator. In order to do this, one has to take care that the

singularities are treated properly. We do this by writing
g =3 eV fs, (60)
8§

with f, equal to 1/R,, 1/Ry, 1/R3, 1/ Ry, 1/ sin x12, 1/ sin xa4, and 1/sin B35. The g will
always be finite. The we have
G”/ = 722/2 Z fsfs, Z g;ﬁlsgjﬂlllsl/uﬁﬁlr (61)
ss’ JiBe

and we use appropriate basis functions and quadratures which handle the singular factors.

VII. DISCUSSION AND CONCLUSIONS

We have discussed the procedure for producing kinetic energy operators for polyatomics
using polyspherical coordinates and very general embeddings of body-fixed z axes. We do
this by introducing the expression

3,

al'ig

= Ajla™?, B A Y 9,610 (62)
Y l
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The matrices g can be very easily built up from the results from fewer numbers of vectors,
and the kinetic energy operator coefficients are simply given by dot products of columns of g.
Non-orthogonal coordinate systems pose no formal difficulty — however in practice, much
more complicated expressions arise. We also show how to generalize the a parameterized
axis embedding of Sutcliffe and Tennyson[7] to more than three atoms. ‘

One motivation for this work was the derivation of the expressions for the four vector
case using non-orthogonal coordinates. One may ask why one would want to use non-
orthogonal coordinates since the kinetic energy operator is sc much simpler for orthogonal
coordinates? There are several reasons for this. One reason, put forward by Handy,[16]
is that the potential matrix elements are much simpler when one uses the physical bond-
length-bond-angle coordinates. While less of an issue for triatomics, this becomes very
important as the number of atoms increases, especially if one wants to usc a single potential
energy surface for more than one isotopomer. The second reason is related to the treatment
of Born-Oppenheimer breakdown. We have showed the impcrtance of including both first
and second order corrections for H,0,[17] and since the second order correction gives rise
to cross terms in the kinetic energy operator, even when orthogonal coordinates are used,
the argument of simplicity no longer is valid. In addition, it is very useful for debugging
programs to be able to compare the results obtained using different coordinates. Finally, it
can be useful to turn to non-orthogonal coordinates to improve the convergence of the basis
function expansion.[18]

In addition to its utility for deriving expressions for the kiretic energy operator, the ma-
trices g are also required in generating non-adiabatic correction function originally computed
for cartesian nuclear position vectors.[19]

In this work, we have not discussed what basis functions to use with these kinetic energy
operators. Basically there are only two restrictions: first of all the functions must give finite
matrix elements, and secondly they must adequately cover the Hilbert space for the problem
of interest. For triatomics with a # 0, we used Jacobi polynomial basis functions to avoid
the singularities in the matrix elements.[20] For the three and four vector case, it is not

vet clear what changes one needs to make to ensure finite matrix elements when b or ¢ are
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TABLE I. Coordinate transformation matrix g*.

a b b
OR sz Lyf

_1A
yO ;5 0
z 1 0 0
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TABLE II: Coordinate transformation matrix g9, a=1 - a.

i A Iz Ty J:
—sinay 0 —cosayx/m 0 acosay/ir 0
0 0 0 —sinay/(iry sin x) 0 —cosay/(ir) sin x)
cosay 0 —sinax/m 0 asinax/iry 0
0 sinay cosax/r2 0 acosax/irs 0
0 0 0 —sinay/(irs sin x) 0 cos ax/(irg sin x)
0  cosay —sinay/r: 0 —asinay,iry 0



TABLE IIL: Coordinate transformation matrix g®. a=1—a.
i o5 5 Ty %
—sinay O 0 —cosax/ri acosay —acosaysinycot Lt"/rl 0 0 a cos a)y sin-y
X cos /T xcsc B/ir
0 0 0 0 —sinaysiny —[sinax cos¥cot 3 0 0 sinay cosycsc B
xese x/r + cosax]csc x /71 xecse x/iry
cos ax 0 0 -—sinay/r; asiney  —asinaysinycot 6/ry 0 0 asinaysiny
X COSq/71 X CSC B/irl
0 sinay 0 cosax/r acosay  —acosaysinycot [5'/7"2 0 0 acosaysiny
X €08 ¥/ xcse 3/ir
0 0 0 0 —sinaysing —[sinax cosycot 3 0 0 sinay cosycsc Jé;
xXcse x/r2 —cos ax]esc x /7o xcse x/ira
0 cosaxy 0 —sind@x/rp —asinaxy asinaysinycot B/rg 0 0 —asinaysiny
X cos ¥ /7o xcse f3/irg
0 0 0 0 —1/r3 0 0 1/ir3 0
0 0 0 0 0 csc B3 ~1/irs 0 — cot Birs
0 0 1 0 0 0 0 0 0
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TABLE IV: Coordinate transformation ma-rix g(*.

8 9 8 o 2 0 o J AN | Ji 7
dR, ORy 9dxi12 ORs ORy Ox34 Oh&3a 9334 Oy3q VT Y “z
g(z.l) 0 g’(”)RI g2
0 A7 g(Q.l) Al g(‘.2.2)112 0

COS c¥34 COL [5’34 sin 34 — COS dgﬁ,CSCﬁ34
R, = sinagyycot Bg.; — COS (34 — sin d34cscB34
-1 0 0
—Co8 ﬁ34csc[}34 Sin y34 cos 34 cot 534
R, = sin ’?34CSCB34 COS Y34 — sin y34 cot B34
0 0 1
AT = AT(a34, B31,734) 0
0 AT (a34, B34, 7934)
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